Approximate convexity and submonotonicity
نویسنده
چکیده
It is shown that a locally Lipschitz function is approximately convex if, and only if, its Clarke subdifferential is a submonotone operator. Consequently, in finite dimensions, the class of locally Lipschitz approximately convex functions coincides with the class of lower-C functions. Directional approximate convexity is introduced and shown to be a natural extension of the class of lower-C functions in infinite dimensions. The following characterization is established: a multivalued operator is maximal cyclically submonotone if, and only if, it coincides with the Clarke subdifferential of a locally Lipschitz directionally approximately convex function, which is unique up to a constant. Furthermore, it is shown that in Asplund spaces, every regular function is generically approximately convex.
منابع مشابه
Sequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملOn Approximate Hermite–hadamard Type Inequalities
The main results of this paper offer sufficient conditions in order that an approximate lower Hermite–Hadamard type inequality implies an approximate Jensen convexity property. The key for the proof of the main result is a Korovkin type theorem.
متن کاملSubdifferential characterization of approximate convexity: the lower semicontinuous case
Throughout, X stands for a real Banach space, SX for its unit sphere, X ∗ for its topological dual, and 〈·, ·〉 for the duality pairing. All the functions f : X → R∪{+∞} are lower semicontinuous. The Clarke subdifferential , the Hadamard subdifferential and the Fréchet subdifferential of f are respectively denoted by ∂Cf , ∂Hf and ∂F f . The Zagrodny two points mean value inequality has proved t...
متن کاملGeneralized approximate midconvexity
The existing various notions of generalized convexity are very useful, in particular in optimal control theory (Cannarsa and Sinestrari, 2004) and optimization (for more information and references see Rolewicz, 2005). Therefore, convenient conditions which guarantee generalized convexity are very useful. As we know from the classical theory of convex functions, midconvexity and local upper boun...
متن کامل